Вариант № 33597

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.


Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


Версия для печати и копирования в MS Word
1
Задание № 511
i

Ука­жи­те номер ри­сун­ка, на ко­то­ром изоб­ра­жен рав­но­бед­рен­ный тре­уголь­ник.

1)

2)

3)

4)

5)



2
Задание № 482
i

Ука­жи­те вер­ное ра­вен­ство:



3
Задание № 813
i

Ариф­ме­ти­че­ская про­грес­сия (an) за­да­на фор­му­лой n-го члена an  =  2n + 5. Най­ди­те раз­ность этой про­грес­сии.



4
Задание № 574
i

Най­ди­те зна­че­ние вы­ра­же­ния  левая круг­лая скоб­ка целая часть: 7, дроб­ная часть: чис­ли­тель: 3, зна­ме­на­тель: 4 минус целая часть: 7, дроб­ная часть: чис­ли­тель: 17, зна­ме­на­тель: 24 пра­вая круг­лая скоб­ка умно­жить на 4,8 минус 0,7.



5
Задание № 5
i

Из точки А к окруж­но­сти про­ве­де­ны ка­са­тель­ные AB и АС и се­ку­щая AM, про­хо­дя­щая через центр окруж­но­сти О. Точки В, С, M лежат на окруж­но­сти (см. рис.). Най­ди­те ве­ли­чи­ну угла AOB, если \angle CAO = 25 гра­ду­сов.



6
Задание № 666
i

На ко­ор­ди­нат­ной плос­ко­сти изоб­ра­жен па­рал­ле­ло­грамм ABCD с вер­ши­на­ми в узлах сетки (см.рис.). Длина диа­го­на­ли AC па­рал­ле­ло­грам­ма равна:



7
Задание № 847
i

Точки A, B, C раз­де­ли­ли окруж­ность так, что гра­дус­ные меры дуг AB, BC, CA в ука­зан­ном по­ряд­ке на­хо­дят­ся в от­но­ше­нии 5 : 6 : 7. Най­ди­те гра­дус­ную меру угла ABC.



8
Задание № 668
i

Пусть a  =  2,9; b  =  8,7 · 103. Най­ди­те про­из­ве­де­ние ab и за­пи­ши­те его в стан­дарт­ном виде.



9
Задание № 1162
i

Ре­ше­ни­ем си­сте­мы не­ра­венств  си­сте­ма вы­ра­же­ний x левая круг­лая скоб­ка x плюс 10 пра­вая круг­лая скоб­ка плюс 25 боль­ше 0,29 мень­ше или равно дробь: чис­ли­тель: 1 минус x, зна­ме­на­тель: 0,1 конец дроби мень­ше дробь: чис­ли­тель: 7,3, зна­ме­на­тель: 0,1 конец дроби конец си­сте­мы . яв­ля­ет­ся:



10
Задание № 40
i

Пло­щадь осе­во­го се­че­ния ци­лин­дра равна 10. Пло­щадь его бо­ко­вой по­верх­но­сти равна:



11
Задание № 611
i

Упро­сти­те вы­ра­же­ние  дробь: чис­ли­тель: 11 ко­рень из: на­ча­ло ар­гу­мен­та: 11 конец ар­гу­мен­та плюс 3 ко­рень из 3 , зна­ме­на­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 11 конец ар­гу­мен­та плюс ко­рень из 3 конец дроби минус ко­рень из: на­ча­ло ар­гу­мен­та: 33 конец ар­гу­мен­та плюс дробь: чис­ли­тель: 16 ко­рень из 3 , зна­ме­на­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 11 конец ар­гу­мен­та минус ко­рень из 3 конец дроби



12
Задание № 492
i

На одной чаше урав­но­ве­шен­ных весов лежат 3 яб­ло­ка и 2 груши, на дру­гой  — 1 яб­ло­ко, 4 груши и гирь­ка весом 40 г. Каков вес одной груши (в грам­мах), если все фрук­ты вме­сте весят 980 г? Счи­тай­те все яб­ло­ки оди­на­ко­вы­ми по весу и все груши оди­на­ко­вы­ми по весу.



13
Задание № 283
i

Па­рал­лель­но сто­ро­не тре­уголь­ни­ка, рав­ной 7, про­ве­де­на пря­мая. Длина от­рез­ка этой пря­мой, за­клю­чен­но­го между сто­ро­на­ми тре­уголь­ни­ка, равна 4. Най­ди­те от­но­ше­ние пло­ща­ди по­лу­чен­ной тра­пе­ции к пло­ща­ди ис­ход­но­го тре­уголь­ни­ка.



14
Задание № 644
i

Упро­сти­те вы­ра­же­ние

 левая круг­лая скоб­ка 4 плюс дробь: чис­ли­тель: a в квад­ра­те плюс 16c в квад­ра­те минус b в квад­ра­те , зна­ме­на­тель: 2ac конец дроби пра­вая круг­лая скоб­ка : левая круг­лая скоб­ка a плюс b плюс 4c пра­вая круг­лая скоб­ка умно­жить на 2ac.



15
Задание № 225
i

На ко­ор­ди­нат­ной плос­ко­сти изоб­ра­жен ту­по­уголь­ный тре­уголь­ник ABC с вер­ши­на­ми в узлах сетки (см. рис.). Ко­си­нус угла ABC этого тре­уголь­ни­ка равен:



16
Задание № 1043
i

Най­ди­те сумму наи­мень­ше­го и наи­боль­ше­го целых ре­ше­ний двой­но­го не­ра­вен­ства  минус 448,9 мень­ше 2,9 плюс 9x мень­ше 23,6.



17
Задание № 287
i

Рас­по­ло­жи­те числа  ко­рень 4 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та ; ко­рень 20 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 180 конец ар­гу­мен­та ; ко­рень 5 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 4 конец ар­гу­мен­та в по­ряд­ке воз­рас­та­ния.



18
Задание № 918
i

Сумма всех на­ту­раль­ных ре­ше­ний не­ра­вен­ства  левая круг­лая скоб­ка 5 минус x пра­вая круг­лая скоб­ка умно­жить на левая круг­лая скоб­ка x плюс 6 пра­вая круг­лая скоб­ка в квад­ра­те левая круг­лая скоб­ка x минус 19 пра­вая круг­лая скоб­ка в квад­ра­те \geqslant0 равна:



19
Задание № 49
i

Най­ди­те про­из­ве­де­ние кор­ней урав­не­ния  дробь: чис­ли­тель: 3, зна­ме­на­тель: x плюс 1 конец дроби плюс 1= дробь: чис­ли­тель: 10, зна­ме­на­тель: x в квад­ра­те плюс 2x плюс 1 конец дроби .


Ответ:

20
Задание № 680
i

Най­ди­те про­из­ве­де­ние боль­ше­го корня на ко­ли­че­ство кор­ней урав­не­ния  дробь: чис­ли­тель: 14, зна­ме­на­тель: x в квад­ра­те минус 8x плюс 22 конец дроби минус x в квад­ра­те плюс 8x=17.


Ответ:

21
Задание № 1011
i

В рав­но­бед­рен­ную тра­пе­цию, пло­щадь ко­то­рой равна  целая часть: 10, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 8 , впи­са­на окруж­ность. Сумма двух углов тра­пе­ции равна 60°. Най­ди­те пе­ри­метр тра­пе­ции.


Ответ:

22
Задание № 862
i

Пусть (x1; y1), (x2; y2)  — ре­ше­ния си­сте­мы урав­не­ний  си­сте­ма вы­ра­же­ний x в квад­ра­те плюс 3x=30 плюс 5y,3x минус 5y=5. конец си­сте­мы .

Най­ди­те зна­че­ние вы­ра­же­ния x_1y_2 плюс x_2y_1.


Ответ:

23
Задание № 533
i

Най­ди­те про­из­ве­де­ние кор­ней урав­не­ния 3 в сте­пе­ни левая круг­лая скоб­ка x в квад­ра­те пра­вая круг­лая скоб­ка плюс 135=4 в сте­пе­ни левая круг­лая скоб­ка 2 минус x в квад­ра­те пра­вая круг­лая скоб­ка умно­жить на 12 в сте­пе­ни левая круг­лая скоб­ка x в квад­ра­те пра­вая круг­лая скоб­ка .


Ответ:

24
Задание № 1014
i

Най­ди­те сумму кор­ней урав­не­ния  левая круг­лая скоб­ка x минус 16 пра­вая круг­лая скоб­ка умно­жить на левая круг­лая скоб­ка 4 в сте­пе­ни x минус 3 умно­жить на 2 в сте­пе­ни левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка минус 16 пра­вая круг­лая скоб­ка =0.


Ответ:

25
Задание № 985
i

Най­ди­те пло­щадь бо­ко­вой по­верх­но­сти пра­виль­ной тре­уголь­ной пи­ра­ми­ды, если длина бис­сек­три­сы ее ос­но­ва­ния равна  дробь: чис­ли­тель: 9 ко­рень из 3 , зна­ме­на­тель: 2 конец дроби и плос­кий угол при вер­ши­не 2 арк­тан­генс дробь: чис­ли­тель: 3, зна­ме­на­тель: 4 конец дроби .


Ответ:

26
Задание № 416
i

Най­ди­те зна­че­ние вы­ра­же­ния:  дробь: чис­ли­тель: синус в квад­ра­те 64 гра­ду­сов, зна­ме­на­тель: 8 синус в квад­ра­те 8 гра­ду­сов умно­жить на синус в квад­ра­те 58 гра­ду­сов умно­жить на синус в квад­ра­те 74 гра­ду­сов умно­жить на синус в квад­ра­те 82 гра­ду­сов конец дроби .


Ответ:

27
Задание № 1017
i

Най­ди­те (в гра­ду­сах) сумму кор­ней урав­не­ния 14 синус 6x ко­си­нус 6x плюс 7 синус 12x ко­си­нус 9x=0 на про­ме­жут­ке (90°; 150°).


Ответ:

28
Задание № 388
i

В рав­но­бо­кой тра­пе­ции боль­шее ос­но­ва­ние вдвое боль­ше каж­дой из осталь­ных сто­рон и лежит в плос­ко­сти α. Бо­ко­вая сто­ро­на об­ра­зу­ет с плос­ко­стью α угол, синус ко­то­ро­го равен  дробь: чис­ли­тель: ко­рень из 3 , зна­ме­на­тель: 6 конец дроби . Най­ди­те 18sinβ, где β — угол между диа­го­на­лью тра­пе­ции и плос­ко­стью α.


Ответ:

29
Задание № 479
i

Из двух рас­тво­ров с раз­лич­ным про­цент­ным со­дер­жа­ни­ем спир­та мас­сой 200 г и 300 г от­ли­ли по оди­на­ко­во­му ко­ли­че­ству рас­тво­ра. Каж­дый из от­ли­тых рас­тво­ров до­ли­ли в оста­ток дру­го­го рас­тво­ра, после чего про­цент­ное со­дер­жа­ние спир­та в обоих рас­тво­рах стало оди­на­ко­вым. Най­ди­те, сколь­ко рас­тво­ра (в грам­мах) было от­ли­то из каж­до­го рас­тво­ра.


Ответ:

30
Задание № 390
i

Ос­но­ва­ни­ем пи­ра­ми­ды SABCD яв­ля­ет­ся ромб со сто­ро­ной  ко­рень из: на­ча­ло ар­гу­мен­та: 42 конец ар­гу­мен­та и углом BAD, рав­ным  арк­ко­си­нус дробь: чис­ли­тель: 3, зна­ме­на­тель: 4 конец дроби . Ребро SD пер­пен­ди­ку­ляр­но ос­но­ва­нию, а ребро SB об­ра­зу­ет с ос­но­ва­ни­ем угол 60 гра­ду­сов. Най­ди­те ра­ди­ус R сферы, про­хо­дя­щей через точки A, B, C и се­ре­ди­ну ребра SB. В ответ за­пи­ши­те зна­че­ние вы­ра­же­ния R2.


Ответ:
Завершить работу, свериться с ответами, увидеть решения.